2019年,“变化”仍然是中国科技界的主旋律。经过了近20年的“狂飙突进”,中国C端人口的流量红利逐渐退去。在物联网、大数据、云计算、人工智能等技术的驱动下,巨头纷纷选择拥抱To B,全面加速产业互联网发展。
在人工智能和产业互联网的推动下,诸多应用与概念脱颖而出,变得炙手可热。而在2019年,边缘计算毫无疑问迎来了集中爆发,让人们不由感叹:边缘计算不再边缘。
16年磨一剑,边缘计算进入黄金时代
早在2003年,AKAMAI就在与IBM合作时提出了“边缘计算”概念,并建立起初步应用。作为一个16年前的概念,边缘计算并不年轻,甚至在科技领域中雨后春笋的概念中略显低调,但想一想1956年的人工智能、1995年的物联网、2006年的云计算,边缘计算又正值当打之年,与新晋网红般的科技概念不同,这些曾经的概念都已走入现实,开始为人们提供服务,改善人们的生活。
为何边缘计算今年才迎来爆发?
边缘计算的崛起源自于云计算的成熟和AI让物联网的“重生”。据第三方数据分析机构IDC 的最新预测,到2020年,全球将有约500亿的智能设备接入网络,其中主要涉及智能手机、可穿戴设备、个人交通工具等,其中 40% 的数据需要边缘计算服务。
越来越多的设备接入物联网,其产生和收集的数据呈指数级增长。与之相对的,AI的图像分析、语音语义识别、视频分析、自动化控制、人机交互等功能与物联网实现了更加深入的融合,成为推动产业互联网的重要帮手。
另一方面,随着5G的落地,未来将产生新一轮的数据爆发,对AI 算力提出了更高的要求。正如OpenAI的最新报告显示,最先进AI模型的计算量每3.4个月翻一番,也就是每年增长10倍,比摩尔定律2年增长一倍的速度快得多。
只靠传统的云端计算,物联网将不堪重负,人工智能也将陷入停滞。更为现实的是:在很多场景上的智能化应用,也只有边缘计算才可以解决。因此,在产业需求和数据积累形成的肥沃土壤中,边缘计算的爆发是必然。
有别于云计算,边缘计算将人工智能深度学习算法中的“推理”或“训练”过程前置到靠近用户端/数据产生端一侧,在本地就近处理,完成实时的、快速的计算和反馈,从而大大提升响应速度,进而在包括社区、零售等很多场景形成更好的用户体验。
很多机构对边缘计算的概念作出过诠释。但业界最喜欢举的例子还是章鱼实验。2016年4月,新西兰国家水族馆一只名为“Inky”的章鱼从半开的水族缸里爬了出来,走过房间并钻入一个排水口,穿过50米长的水管之后,成功地进入了外海。
章鱼成为了地球上最“聪明”的生物类群之一,这是因为它拥有“一个大脑+多个小脑”,不仅能通过40%的大脑容量进行分析和决策,还能通过八条腿上分布的60%的巨量神经元进行感知和分析、腕足和大脑有效配合,让章鱼在各种复杂环境下都能游刃有余。
边缘计算的分布式结构与章鱼非常相似:云端是大脑,但边缘侧可以作为小脑,通过神经元网络分布式局部决策。两者相互协作,共同完成数据的处理和反馈。
和云计算相比,边缘计算主要具有四个优势:第一,灵活性,可以在不同阶段,不同区域和节点和已有硬件基础上,灵活部署设备。第二,高可靠,在无网或网络不稳定的环境下可以进行独立计算和实时反馈,即使一个设备发生故障,也不会影响其它设备。第三,高安全,分布式架构天然加大了黑客攻击的难度,从而保护个人可识别信息免遭窃取和滥用。第四,低延时,边缘设备一般部署在更靠近数据处理的终端,能够就近传输、计算、存储、回传、加密和访问控制等,可更快响应需求并反馈。
但这并不是说边缘计算将彻底取代云计算,只能说两者各有所长,这是一个1+1>2的过程,并非1-1=0的结果。云计算擅长全局性、非实时、长周期的大数据分析;边缘计算擅长局部、实时、短周期的数据处理分析。两者结合,才能适应不同场景下数据处理的不同需求。